The AZ Algorithm for Least Squares Systems with a Known Incomplete Generalized Inverse
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولApproximate Generalized Inverse Preconditioning Methods for Least Squares Problems
iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minim...
متن کاملGeneralized Nonlinear Inverse Problems Solved Using the Least Squares Criterion
The aim of physical sciences is to discover the minimal set of parameters which completely describe physical systems and the laws relating the values of these parameters to the results of any set of measurements on the system. A coherent set of such laws is named a physical theory. To the extent that the values of the parameters can only be obtained as a results of measurements, one may equival...
متن کاملOn the Convergence of the Generalized Linear Least Squares Algorithm
This paper considers the issue of parameter estimation for biomedical applications using nonuniformly sampled data. The generalized linear least squares (GLLS) algorithm, first introduced by Feng and Ho (1993), is used in the medical imaging community for removal of bias when the data defining the model are correlated. GLLS provides an efficient iterative linear algorithm for the solution of th...
متن کاملRecursive least squares with stabilized inverse factorization
Recently developed recursive least squares schemes, where the square root of both the covariance and the information matrix are stored and updated, are known to be particularly suited for parallel implementation. However, when finite precision arithmetic is used, round-off errors apparently accumulate unboundedly, so that after a number of updates the computed least squares solutions turn out t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2020
ISSN: 0895-4798,1095-7162
DOI: 10.1137/19m1306385